

REPORT issued by an Accredited Testing Laboratory

Contact person **Tobias Eriksson** Energy Technology +46 10 516 57 07 Tobias.Eriksson@sp.se Date Reference 2013-10-15 3P07091

Page 1 (2) SNEDAC REDITE INO2 ISO/IEC 17025

Filtrimeister OÜ Ehitajate tee 110 EE-12618 TALLIN Estonia

Testing of Air Filter according to EN779:2012

(3 appendices)

A test according to EN 779:2012 was carried out by request from Filter AB.

Tested item

Filtrimeister OÜ, EU7 592x592x600 (8), F7, 592 mm x 592 mm x 600 mm, 8 pocket air filter. Filtrimeister OÜ, EU7 592x592x600 (8), F7, filter medium sample from a 592 mm x 592 mm x 600 mm, 8 pocket air filter (for discharging test).

The items were sent to SP by Filtrimeister OÜ and were received by SP on September 27, 2013.

The items were without visible defects.

Date and Place

The test was carried out at SP's laboratory of Energy Technology in Borås, Sweden on October 8-9, 2013. Discharging test was carried out on October 11-14, 2013.

Test method

The test was carried out according to standard EN 779:2012 "Particulate air filters for general ventilation – Determination of the filtration performance".

Results

The results are presented in appendix 1 and are valid only for the items tested.

SP Technical Research Institute of Sweden

Postal address SP Box 857 SE-501 15 BORÅS Sweden Office location Västeråsen Brinellgatan 4 SE-504 62 BORÅS

Phone / Fax / E-mail +46 10 516 50 00 +46 33 13 55 02 info@sp.se Laboratories are accredited by the Swedish Board for Accreditation and Conformity Assessment (SWEDAC) under the terms of Swedish legislation. This report may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Page

2(2)

Measurement equipment

REPORT

- Pressure gauge Furness model 318, SP's inventory no. 901 568 (static P Filter)
- Pressure gauge Furness model 318, SP's inventory no. 901 569 (static P Flow)
- Pressure gauge Furness FC012, SP's inventory no. 201 691 (Δ P Filter)
- Pressure gauge Furness FC012, SP's inventory no. 201 690 (Δ P Flow)
- Particle counter Las-X II, SP's inventory no. 701 378
- Barometer, Testo 511, SP's inventory no. 900 078
- Temperature and RH, Testo 635, SP's inventory no. 900 065
- Weighing scale, Mettler PC16, SP's inventory no. 202 741
- Flow meter, MFS-C-250, SP's inventory no. 202 742
- Flow meter, MFS-C-50, SP's inventory no. 202 190
- Kr-85 Aerosol Neutralizer, TSI, SP's inventory no. 202 635

Uncertainty of measurement

The uncertainty of the Air flow is better than ± 5 % The uncertainty of the Pressure Drop is better than ± 3 % The uncertainty of the Temperature is better than ± 0.5 °C The uncertainty of the Relative Humidity is better than ± 3 % RH The uncertainty of the Atmospheric Pressure is better than ± 1 mbar The uncertainty of the Measured mass is better than ± 0.5 g

The method error in determination of the filtration efficiency is:

 $\begin{array}{ll} \eta = 0.90 \ \%: & \pm \ 0.1 \ \text{ of penetration value [\%]} \\ \eta = 90.99 \ \%: & \pm \ 0.2 \ \text{ of penetration value [\%]} \\ \eta = 99.99 \ \%: & \pm \ 0.5 \ \text{ of penetration value [\%]} \\ \eta > 99.99 \ \%: & \pm \ 1 \ \text{ of penetration value [\%]} \end{array}$

The uncertainty of the filtration efficiency according to EN 779:2012 is presented in the appendix.

SP Technical Research Institute of Sweden Energy Technology - Combustion and Aerosol Technology Performed by Examined by

Tobias Eriksson

Marie Rönnbäck

Appendices

- 1. Test report according to EN779:2012
- 2. Picture of tested item

3. Interpretation of test reports according to section 13.2 in EN779:2012

Page 1 (8)

SP Technical Research Institute of Sw eden

Report no.: 3P07091

Appendix 1

EN 779:2012

Testing organisation:

AIR FILTER RESULTS

GENERAL

02.0.0.2																
Test no.:		SP201310	0081		Date of	of test:	08/	10/201	3 - 09/	10/201	3		Supervis	or:	CM	
Test reque	ested	by:	Fi	ltrimeister	ΟÜ								Device re	eceivii	ng date	9
Device del	livere	ed by:	Fi	ltrimeister	ΟÜ								27/09/2	013		
DEVICE TE	STE	D														
Model:			Manu	facturer	:				Constru	ction:						
EU7 592	x59	2x600 (8)			Filtri	meistei	r OÜ				Pocket	filter	, 8 pock	ets		
Type of me	edia:				Net ef	ffective	filtering	g area:			Filter din	nensior	ns (width	x hei	ght x d	epth):
Synthetic	с					5.9) m²				592 mr	n x 5	92 mm >	< 600) mm	
TEST DAT	A															
Test air flo	ow ra	ate:	Te	st air tempe	rature:	:	Test	air relati	ive humi	dity:	Test aer	osol:			Loadii	ng dust:
0.9	944	m ³ /s		26 to 34	°C		2	26 to 4	3 %		DEHS				ASH	RAE 52/76
RESULTS			-								-					
Initial press	sure	drop:	Init	ial arrestan	ce:		Initial	efficien	cy (0.4 j	.ım):	Test dus	st capa	city:		Untrea	ated/ discharged efficiency
	124	Pa		>99	%			7	3 %		155 / 2	15/2	258 g		of me	dia (0.4 μm):
													U			77 % / 44%
Final test p 250 / 350	oress 0 / 4	ure drop: 50 Pa	Av >9	verage arres 99% / >99	stance: % / >	: •99%	Aver 88%	age effi / 90%	ciency (5 / 92%	0.4 μm):	Filter cla	ss (45 F7	0 Pa):		Rema	rks:
Note:		The perform	ance	results are	only va	alid for th	ne teste	ed item :	and can	not by th	emselves					
1.010.		be quantitat	ivelv a	applied to pr	edict et	fficiency	and lif	fetime in	service	lot by th						
		oo quantaa	i oly o	ppilod to pi		eieiiei										
	100			-		-		•		-				- 100)	
	90			-										- 90		
	80													- 80		(0.4 µm) as
、	70	◆											_	- 70		a function of
, ,	60										60	%	the air flow			
۳	50										60			- 60	Ġ,	rate
4	50												-	- 50	an	
0) /	40												-	- 40	est	_ · ·
nc	30	-												- 30	Arr	- Arrestance
cie	20													- 20		function of
Ű.	10													- 10		dust fed at
	0												_	- 0		rate
	-	0	5	0	100)	15	50	20	00	25	0	30	00		
							Dust	t fed, g	9							
5	(500 -	0 	50)	100		15	0	20	00	25	0	30	00		
4	.00 -		_								_/	1				drop as a
	00															the air flow
ي			_													rate (clean
<u>d</u> 3	- 00											_				device)
dr								\wedge								
2 nre	.00 -		-									-				
SSI			_									<				drop as a
e 1	00 -									*						function of
					¥		\longrightarrow	*								the air flow
			×									_				rate
	0 -	 n	0.2		1		2		>			1 2		1		
	(U	0.2	0.	+	0.6)	0.8)	1		1.2	1.	.4		
						Α	ir flov	w rate	, m³/s							

Page 2 (8)

Appendix 1

EN779:2012 - Efficiency after different dust loading phases

Air filter:	EU7 592x592x600 (8)
Test no.:	SP201310081
Test aerosol:	DEHS
Air flow rate:	0.944 m ³ /s

Particle size						Effic	iency						
			%										
Interval	Mean				Р	ressure d	rop, F	a and Du	st fed	l, g		_	
		124	Ра	141	Pa	172	Pa	246	Pa	333	Ра	457	Pa
μm	μm	0	g	30	g	80	g	155	g	210	g	265	g
0.10 - 0.12	0.11	$68.4 \hspace{0.1in} \pm \hspace{0.1in}$	2.7	74.2 ±	6.5	80.2 ±	2.4	89.2 ±	0.8	89.9 ±	4.1	94.0 ±	1.9
0.12 - 0.15	0.13	$65.0\ \pm$	0.9	72.5 ±	0.6	78.1 ±	1.1	86.2 ±	0.3	91.0 \pm	0.4	94.4 ±	0.5
0.15 - 0.20	0.17	62.3 \pm	0.8	71.1 ±	0.6	77.2 ±	0.8	86.6 ±	0.5	91.8 \pm	0.2	94.8 ±	0.2
0.20 - 0.25	0.22	$61.8\ \pm$	1.4	72.4 ±	0.6	79.0 ±	0.8	87.9 ±	0.6	$93.0\ \pm$	0.6	95.8 ±	0.3
0.25 - 0.35	0.30	$64.7\ \pm$	0.7	76.6 \pm	0.5	82.8 ±	0.9	91.3 ±	0.4	95.0 \pm	0.2	97.4 ±	0.2
0.35 - 0.45	0.40	$73.0\ \pm$	0.7	$84.0\ \pm$	0.8	89.7 ±	0.5	95.1 ±	0.3	97.5 \pm	0.2	98.7 ±	0.2
0.45 - 0.60	0.52	$81.5\ \pm$	1.0	90.6 \pm	0.6	93.9 ±	0.6	97.6 ±	0.3	99.1 ±	0.2	99.4 ±	0.2
0.60 - 0.75	0.67	$87.7 \ \pm$	1.2	94.6 \pm	0.8	96.7 ±	0.6	98.8 ±	0.2	99.6 \pm	0.2	99.7 ±	0.2
0.75 - 1.00	0.87	92.6 \pm	0.5	96.9 \pm	0.3	98.6 ±	0.3	99.6 ±	0.1	$99.9 ~\pm$	0.1	99.9 ±	0.1
1.00 - 1.50	1.22	$96.5\ \pm$	0.8	$98.9 ~\pm$	0.5	99.3 ±	0.3	99.8 ±	0.2	100.0 ±	0.0	100.0 ±	0.1
1.50 - 2.00	1.73	$98.9 \ \pm$	0.3	99.7 \pm	0.3	99.9 ±	0.1	100.0 ±	0.1	100.0 \pm	0.1	$99.9 \pm $	0.1
2.00 - 3.00	2.45	100.0 \pm	0.0	$99.9~\pm$	0.2	100.0 ±	0.0	100.0 \pm	0.0	100.0 \pm	0.0	100.0 \pm	0.0
NOTE	The uncertai	nty of the I	neasure	ed efficienc	ies is ı	reported on	a 95 %	% confidenc	e leve				

EN779:2012 - Average efficiency at different final test pressure drops

(8)

EU7 592x592x600
SP201310081
DEHS
0.944 m ³ /s

Particle size		Average efficiency %								
Interval	Mean		Fina	l test pres	ssure	drop				
μm	μm	250	Pa	350	Pa	450	Pa			
0.10 - 0.12	0.11	79.8 ±	4.0	82.5 ±	3.6	84.2 ±	3.0			
0.12 - 0.15	0.13	77 .5 ±	0.8	80.7 ±	0.7	82.8 ±	0.6			
0.15 - 0.20	0.17	76.6 ±	0.8	80.2 ±	0.6	82.5 ±	0.5			
0.20 - 0.25	0.22	77.9 ±	1.0	81.5 ±	0.8	83.7 ±	0.7			
0.25 - 0.35	0.30	81.7 ±	0.8	84.9 ±	0.6	86.9 ±	0.5			
0.35 - 0.45	0.40	88 .0 ±	0.6	90.3 ±	0.5	91.7 ±	0.4			
0.45 - 0.60	0.52	92.8 ±	0.6	94.4 ±	0.5	95.2 ±	0.4			
0.60 - 0.75	0.67	95.9 ±	0.7	96.8 ±	0.6	97.3 ±	0.5			
0.75 - 1.00	0.87	97.8 ±	0.3	98.3 ±	0.2	98.6 ±	0.2			
1.00 - 1.50	1.22	99.1 ±	0.4	99.3 ±	0.3	99.4 ±	0.2			
1.50 - 2.00	1.73	$99.8 \hspace{0.1in} \pm \hspace{0.1in}$	0.2	99.8 ±	0.2	99.8 ±	0.1			
2.00 - 3.00	2.45	100.0 \pm	0.1	100.0 ±	0.0	100.0 \pm	0.0			
Test dust ca	155	g	215	g	258	g				
NOTE	The uncerta 95 % confid	inty of the r lence level.	neasu	red efficien	cies is	reported or	na			

Appendix 1

EN779:2012 - Efficiency after different dust loading phases

Air Filter:	EU7 592x592x600 (8)
Test no .:	SP201310081
Test aerosol:	DEHS
Air flow rate:	0.944 m ³ /s

	-
Air Filter:	EU7 592x592x600 (8)
Test no.:	SP201310081
Test aerosol:	DEHS
Air flow rate:	0.944 m ³ /s

Appendix 1

EN779:2012 - Air flow rate and pressure drop after different dust loading phases

Air filter:	EU7 592x592x600 (8)
Test no.:	SP201310081
Test aerosol:	DEHS
Air flow rate:	0.944 m ³ /s

Date	Dust fed	Air flow meter				Filter							
	m _{tot}	t _f	p _{sf}	dp _f	q _m	t	φ	pa	ρ	q _v	Δр	$\Delta p_{1.20}$	
	g	°C	Pa	Pa	kg/s	°C	%	kPa	kg/m ³	m³/s	Pa	Pa	
					Clean filte	er							
08/10/2013	0	26.2	61	32	0.27	26.2	41.3	100.0	1.158	0.237	26	26	
08/10/2013	0	26.4	151	126	0.55	26.4	41.0	100.1	1.158	0.472	56	55	
08/10/2013	0	26.5	262	284	0.82	26.5	41.1	100.2	1.159	0.709	88	87	
08/10/2013	0	25.8	398	505	1.10	25.8	42.9	100.3	1.163	0.945	125	124	
08/10/2013	0	26.8	524	785	1.37	26.8	41.2	100.4	1.160	1.180	166	164	
		Cle	ean filter p	ressure	drop is pro	portional	to (q _v) ⁿ , w	/here n =	1.1493				
	-				Dust loa	iding phas	e						
08/10/2013	30	30.2	419	498	1.083	30.2	33.0	100.3	1.146	0.945	143	141	
08/10/2013	30	32.0	412	495	1.077	32.0	29.6	100.3	1.139	0.945	143	140	
09/10/2013	80	29.0	442	494	1.075	29.0	33.4	99.3	1.139	0.944	174	172	
09/10/2013	80	30.7	439	491	1.069	30.7	31.2	99.3	1.132	0.944	173	170	
09/10/2013	155	32.0	510	490	1.066	32.0	28.1	99.4	1.129	0.945	250	246	
09/10/2013	155	32.7	507	489	1.064	32.7	27.5	99.4	1.126	0.945	246	242	
09/10/2013	210	31.9	604	490	1.067	31.9	29.3	99.4	1.129	0.945	339	333	
09/10/2013	210	33.3	602	488	1.062	33.3	27.1	99.4	1.124	0.945	337	331	
09/10/2013	265	33.5	726	488	1.062	33.5	26.1	99.5	1.124	0.945	466	457	
09/10/2013	265	34.8	716	485	1.056	34.8	24.8	99.4	1.119	0.944	461	451	

2 = after dust increment

1 = before next dust increment

Symbols and units

- dp_f air flow meter differential pressure, Pa
- m_{tot} cumulative mass of dust fed to filter, g
- Δp measured filter pressure drop, Pa
- $\Delta p_{1.20}$ \qquad filter pressure drop at air density 1.20 kg/m³, Pa
- p_a absolute air pressure upstream of filter, kPa
- p_{sf} air flow meter static pressure, kPa
- qm mass flow rate, kg/s
- $q_v \qquad \text{air flow rate filter, } m^3\!/\!s$
- t_f temperature at air flow meter, °C
- t temperature upstream of filter, °C
- ϕ relative humidity upstream of the filter, %
- ρ ~ air density upstream of filter, kg/m^3

Page 5 (8)

Appendix 1

EN779:2012 - Pressure drop and arrestance after different dust loading phases

Air filter:	EU7 592x592x600 (8)
Test no.:	SP201310081
Test aerosol:	DEHS
Air flow rate:	0.944 m ³ /s

Date	Δp_1	dm	m _{tot}	Δp_2	m ₁	m ₂	Δm	m _d	А	A _m
	Pa	g	g	Pa	g	g	g	g	%	%
08/10/2013	124	30	30	141	2639.0	2639.0	0.0	0.0	100.0	100.0
09/10/2013	140	50	80	172	2639.0	2639.0	0.0	0.0	100.0	100.0
09/10/2013	170	75	155	246	2639.0	2639.0	0.0	0.0	100.0	100.0
09/10/2013	242	55	210	333	2639.0	2639.0	0.0	0.0	100.0	100.0
09/10/2013	331	55	265	457	2639.0	2639.0	0.0	0.0	100.0	100.0

Symbols and units

A	arrestance, %
A _m	average arrestance, %
dm	dust increment, g
Δp_1	pressure drop before dust increment (air density 1.20 kg/m³), Pa
Δp_2	pressure drop after dust increment (air density 1.20 kg/m³), Pa
m _d	dust in duct after device, g
m ₁	mass of final filter before dust increment
m ₂	mass of final filter after dust increment
m _{tot}	cumulative mass of dust fed to filter, g
Δm	mass gain of final filter, g

Mass of tested item:

Clean filter:	2 155.3	g
After complete test:	2 415.4	g

Test dust

A SHRAE 52/76, Particle Technology Ltd. Batch no: 8097

Page 6 (8)

Appendix 1

EN779:2012 - Efficiency and pressure drop of untreated filter material at 100 % nominal velocity

	nominal velocity
Air filter:	EU7 592x592x600 (8)
Test no.:	SP201310111
Test aerosol:	DEHS
Discharging method:	Isopropanol
Air flow rate:	14.8 l/s
Media velocity:	0.16 m/s
Size of material sample:	0.24 dm^2

Size of materia	a sample.	9.24 um-			
Particle	size	Sample 1	Sample 2	Sample 3	Average
μm		Efficiency			
		%			
Interval	Mean		Pressu	ire drop	
		91 Pa	87 Pa	88 Pa	89 Pa
0.10 - 0.12	0.11	75.2 ± 1.8	73.8 ± 3.1	75.3 ± 6.0	74.8
0.12 - 0.15	0.13	73.0 ± 2.0	69.7 ± 1.5	72.3 ± 0.9	71.7
0.15 - 0.20	0.17	69.4 ± 2.7	66.2 ± 2.1	70.1 ± 1.1	68.6
0.20 - 0.25	0.22	69.4 ± 2.2	65.4 ± 1.8	69.3 ± 1.3	68.0
0.25 - 0.35	0.30	72.8 ± 1.4	68.6 ± 2.2	70.6 ± 1.8	70.6
0.35 - 0.45	0.40	79.3 ± 1.6	74.7 ± 1.2	77.7 ± 1.7	77.2
0.45 - 0.60	0.52	85.3 ± 1.0	81.2 ± 1.6	85.1 ± 1.1	83.9
0.60 - 0.75	0.67	91.6 ± 1.9	88.7 ± 1.6	90.4 ± 1.5	90.2
0.75 - 1.00	0.87	95.2 ± 1.2	92.7 ± 1.1	94.5 ± 0.8	94.1
1.00 - 1.50	1.22	97.5 ± 0.6	96.6 ± 1.0	97.7 ± 0.6	97.3
1.50 - 2.00	1.73	99.4 ± 0.3	98.3 ± 0.4	99.0 ± 0.4	98.9
2.00 - 3.00	2.45	99.8 ± 0.4	99.7 ± 0.4	99.9 ± 0.2	99.8
NOTE The uncertainty of the measured efficiencies is reported on a 95 % confidence level					

EN779:2012 - Efficiency and pressure drop of discharged filter material at 100 % nominal velocity

Air filter:	EU7 592x592x600 (8)
Test no.	SP201310111
Test aerosol:	DEHS
Discharging method:	Isopropanol
Air flow rate:	14.8 l/s
Media velocity:	0.16 m/s
Size of material sample:	9.24 dm²

Particle	size	Sample 1	Sample 2	Sample 3	Average
μm		Efficiency			
		%			
Interval	Mean	Pressure drop			
		82 Pa	80 Pa	81 Pa	81 Pa
0.10 - 0.12	0.11	43.9 ± 16.3	54.2 ± 10.9	47.1 ± 12.0	48.4
0.12 - 0.15	0.13	31.9 ± 3.9	35.4 ± 2.8	33.5 ± 2.7	33.6
0.15 - 0.20	0.17	28.0 ± 2.1	31.3 ± 1.8	29.6 ± 3.3	29.6
0.20 - 0.25	0.22	29.5 ± 2.2	33.9 ± 2.6	29.0 ± 2.5	30.8
0.25 - 0.35	0.30	33.6 ± 4.0	37.6 ± 2.6	33.5 ± 1.7	34.9
0.35 - 0.45	0.40	42.2 ± 2.0	46.1 ± 2.8	42.4 ± 2.7	43.5
0.45 - 0.60	0.52	53.6 ± 3.3	55.9 ± 1.8	52.8 ± 2.0	54.1
0.60 - 0.75	0.67	62.7 ± 3.1	65.6 ± 3.3	63.9 ± 2.6	64.0
0.75 - 1.00	0.87	72.1 ± 1.5	74.8 ± 1.9	72.2 ± 1.4	73.0
1.00 - 1.50	1.22	84.5 ± 2.1	84.4 ± 1.6	81.8 ± 2.0	83.6
1.50 - 2.00	1.73	92.0 ± 1.3	92.7 ± 1.8	92.7 ± 1.4	92.5
2.00 - 3.00	2.45	98.9 ± 1.1	98.6 ± 0.7	98.8 ± 0.9	98.8
NOTE The uncertainty of the measured efficiencies is reported on a 95 % confidence level.					

Page 7 (8)

Appendix 1

EN779:2012 - Efficiency and pressure drop of untreated filter material at 50 % nominal velocity

Air filter:	EU7 592x592x600
Test no.:	SP201310111
Test aerosol:	DEHS
Discharging method:	Isopropanol
Air flow rate:	7.4 l/s
Media velocity:	0.08 m/s
Cine of motorial complex	$0.04 dm^2$

Size of material sample: 9.24 dm² Particle size Sample 2 Sample 3 Sample 1 Average Efficiency μm % Pressure drop Interval Mean 43 Pa 45 Pa 44 Pa 44 Pa 0.10 - 0.12 0.11 80.9 ± 8.3 79.3 ± 10.3 78.7 ± 9.9 79.6 8<u>1.9 ± 1.1</u> 8<u>0.6 ± 1.1</u> 0.12 - 0.15 0.13 83.5 ± 1.7 82.0 0.15 - 0.20 0.17 83.8 ± 0.9 82.8 ± 1.3 82.8 81.9 ± 1.0 0.20 - 0.25 0.22 84.4 ± 1.1 81.5 ± 1.4 82.5 ± 1.4 82.8 0.25 - 0.35 0.30 85.9 ± 0.7 83.4 ± 0.8 84.2 ± 1.1 84.5 0.35 -89.7 ± 0.4 0.45 0.40 86.9 ± 1.0 88.2 ± 0.9 88.3 0.45 -92.7 0.60 0.52 92.3 ± 0.5 93.9 ± 1.1 91.8 ± 0.5 0.60 -0.75 0.67 95.9 ± 1.1 94.2 ± 0.8 94.8 ± 1.5 95.0 0.75 - 1.00 0.87 98.2 ± 0.4 97.1 ± 0.4 97.0 ± 0.6 97.4 1.22 1.00 - 1.50 99.2 ± 0.5 98.3 ± 0.6 98.6 98.3 ± 0.4 1.50 - 2.00 1.73 99.8 ± 0.1 99.4 ± 0.2 99.5 ± 0.2 99.6 2.00 -3.00 2.45 100 ± 0.0 99.8 ± 0.3 99.9 ± 0.2 99.9 NOTE The uncertainty of the measured efficiencies is reported on a 95 % confidence level.

(8)

EN779:2012 - Efficiency and pressure drop of discharged filter material at 50 % nominal velocity

Air filter:	EU7 592x592x600 (8)
Test no.	SP201310111
Test aerosol:	DEHS
Discharging method:	Isopropanol
Air flow rate:	7.4 l/s
Media velocity:	0.08 m/s
Size of material sample:	9.24 dm ²

Particle	size	Sample 1	Sample 2	Sample 3	Average
μm		Efficiency			
		%			
Interval	Mean	Pressure drop			
		41 Pa	40 Pa	40 Pa	40 Pa
0.10 - 0.12	0.11	58.4 ± 5.2	59.9 ± 6.7	55.2 ± 18.7	57.8
0.12 - 0.15	0.13	44.5 ± 3.1	49.6 ± 2.9	46.3 ± 2.2	46.8
0.15 - 0.20	0.17	40.6 ± 1.9	45.0 ± 2.7	42.0 ± 1.2	42.5
0.20 - 0.25	0.22	38.6 ± 3.0	44.1 ± 2.9	40.8 ± 2.9	41.2
0.25 - 0.35	0.30	40.9 ± 3.4	44.7 ± 3.6	40.3 ± 2.8	42.0
0.35 - 0.45	0.40	48.3 ± 2.0	52.2 ± 2.6	47.7 ± 1.5	49.4
0.45 - 0.60	0.52	55.8 ± 2.8	61.1 ± 1.3	57.5 ± 1.6	58.1
0.60 - 0.75	0.67	63.6 ± 2.3	67.1 ± 3.6	66.6 ± 1.9	65.8
0.75 - 1.00	0.87	73.0 ± 2.0	75.6 ± 3.4	72.8 ± 1.5	73.8
1.00 - 1.50	1.22	81.6 ± 1.8	82.7 ± 1.9	80.0 ± 2.9	81.5
1.50 - 2.00	1.73	90.0 ± 1.7	89.9 ± 1.8	90.2 ± 1.8	90.0
2.00 - 3.00	2.45	98.1 ± 0.8	97.9 ± 1.1	98.1 ± 1.2	98.0
NOTE The uncertainty of the measured efficiencies is reported on a 95 % confidence level.					

Page 8 (8)

Appendix 1

Appendix 2

Page 1 (1)

PAT.MR. EP 0 687 195 81

Page 1 (1)

Appendix 3

The interpretation of test reports – according to EN779:2012 13.2 Interpretation of test reports

This brief review of the test procedures, including those for addressing the testing of electrostatically charged filters, is provided for those unfamiliar with EN 779 procedures. It is intended to assist in understanding and interpreting the results in the test report/summary. (For further details of procedures the full EN 779 document should be consulted).

Many types of air filter rely on the effects of passive static electric charges on the fibers to achieve high efficiencies, particularly in the initial stages of their working life. Environmental factors encountered in service may affect the action of these electric charges so that the initial efficiency may drop substantially after an initial period of service. In many cases this is offset or countered by an increase in efficiency ("mechanical efficiency") as dust deposits in filter media. In the later stages of operating life the efficiency may increase to equal or exceed the initial efficiency. The reported untreated and conditioned (discharged) efficiencies show the extent of the electrical charge effect on initial performance. It should not be assumed that the measured conditioned (discharged) efficiency represents real life behaviour. It merely indicates the level of efficiency obtainable with the charge effect completely removed and with no compensating increase in mechanical efficiency.

For reasons of consistency filter efficiencies are measured using artificially generated clouds of synthetic DEHS material (droplets) with closely controlled particle size. These efficiency measurements are repeated after the filter has been loaded with ASHRAE loading dust until the resistance has risen to a value of 250 Pa in the case of the coarse (G) procedure and with up to a value of 450 Pa for the fine and medium (F and M) procedure. Test dust capacities measured in this way may be used for to compare performances and for rankings but should not be assumed to simulate real life operating conditions as the properties of dusts encountered in service conditions vary very widely.